
Steganography in computer graphics

InSaNe^WaRl0rD *OgGiZ*

14th February 2006



Contents

1 Introduction 2

2 Bits, bytes and data 3

3 24-bits uncompressed image data 4

3.1 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Continuous data representation 7

5 Indexed data 8

5.1 Pseudo-Continuous data representation . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Non-Continuous data representation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2.1 Quick Steganography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2.2 Nice Steganography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Lossless compression 12

7 Lossy compression 13

7.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.1 Color Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.2 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.4 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3 Possible Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 Di�usion and confusion 15

8.1 Blur the �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.2 Encode the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.3 Shu�e the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8.3.1 Numerical permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.3.2 Polynomial movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8.4 Invoke chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9 From bits to �le pack 19

9.1 Queue-leu-leu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.2 Indexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

10 A brief history of... motivations 20

1



Chapter 1

Introduction

Hi everyone and thank you to have chosen this article to lead you trough the world of steganogra-
phy. You will probably notice that this paper uses heavy mathematic descriptions but don't care if
you don't like mathz... Don't care of the code if you don't like programming. Formulas are written
for mathematicians, text is written for presentation and code is written for programmers. I hope
that everybody will be able to fully understand the article through one of these three languages.

Steganography is the art of hiding data inside other �les. If cryptography is the way you
encode data, then steganography is the way you would hide them. From author name in a picture
to governemental secrets on an audio tape, steganography is everywhere. But including data in a
�le means modifying the �le itself so if steganography isn't done properly it might be trivial for a
steganalyst to reverse your job.

Steganography is a complex art requiring an important knowledge of �le formats and a great
sense of ingeniosity. While this paper does not aim to teach everything about the topic, I hope it
will help you to get introduced to steganography's best kept secrets.

I would like to note before your begin to read this article that everything here is the product
of my own individual work. You will �nd theorems that probably do not exist in other scienti�c
publications but they are formulated to make everything nice to understand. Also, since I have
no o�cial background in steganography this document might seem far away from the reality, or
it might even look clever ; I don't know ; But it works. Anyway, I hope you will enjoy it.

Also, the chapter about JPEG1 steganography is still theoretical only since I haven't got
enought time to test it. Encoding and decoding JPEG �les is a very complex process which may
explain why there are no reports of any real steganography program that works with JPEG. Those
which exists does it using hidden �elds in the �le such as those used for the author name and
such...

1Joint Photographic Experts Group, see http://www.jpeg.org.

2



Chapter 2

Bits, bytes and data

Before jumping in the deep concepts of image steganography we will need a few theory about bits,
bytes and data alignment.

In the computer world, everything is ruled by bits. But what is a bit ? Basicaly it is a 1 or a
0, representing the electric state of some latches inside your computer. Then, is it the same than
a byte ? Of course not, a byte is eight bits; but you might already knew that. With eight bits you
can do several things :

1. You can use it as �ags. That means, a byte would hold eight open/close, active/unactive,
set/not set, ... values. Each value is called a �ag.

2. You can use it to represent a positive integer . As well as you reprensent numbers in base 10,
you can represent them in base 2. For example, 123 in base 10 would be written 01111011 in
base 2 because 1.20+1.21+0.22+1.23+1.24+1.25+1.26+0.27 = 1+2+8+16+32+64 = 123.
So, with eight bits you can represent any positive integer between 0 and 255.

3. Any other things your brain can imagine ! For example, there are tricks to represent positive
and negative integers.

There are two ways to represent a byte :

1. Least signi�cant bit �rst (LSB �rst). We write the number with the left handed bit as the
smallest impact on the number.

2. Most signi�cant bit �rst (MSB �rst). We write the number with the right handed bit as the
smallest impact on the number. This is the most used format.

Finaly, data is just several bytes. Why bytes and not bits ? Because the computer is based around
bytes, it is all about that. Note that there are two ways to store data in memory. Imagine we
have three bytes called b1, b2 and b3. There are several ways to represent them but only two are
plausibles :

1. Little endian. We write b3 �rst, then b2 and �naly b1.

2. Big endian. We write b1 �rst, then b2 and �naly b1.

Remember that Windows OS works with Little Endian and that LSB means Least Signi�cant Bit.
Remember that any things in the computer is made of bits : the programs you execute, the �les
you read, the pictures you watch. And there is only one �avor of bits no matter if they come from
a �le, a program or a photo !

3



Chapter 3

24-bits uncompressed image data

There are several data storage formats but here we will play with the easiest one : true color
bitmaps. In BMP24 the image is represented by a set of colors. It just stores colors, no pixel
locations. But then, how does it know where to apply the color ? Actually, it does store a bit of
localisation informations in its header : width and height. Here is how to draw a bitmap :

You start with the bottom-left pixel and apply the �rst color value you read. Then, you move
on your right and apply the next color you read, then you move on the right and ... and so on.
When you have reached the width, you get on the upper line, position at the left handed border
and start again. If you are lucky, when you have done all the pixels there will be nothing left to
read in the �le.

Ok but, what is a color ? So far we have talked about colors but not the way they were actually
stored in the �le. As we have seen in the chapter title, the format is 24-bits. That means the color
information is stored on 24 bits which is 3 bytes. In computer stu�, this means we have three
channel coded on one byte : red channel, green channel, and blue channel. You have probably
heard about that as the RGB model. Problem is that Windows OS works with Little Endian so
you won't read RGB but BGR. If you plan to draw bitmaps yourself, take care of this or it is
going to look odd !

So, a bmp �le just looks like that :

(HEADER) (RGB)1 (RGB)2 (RGB)3 . . . (RGB)width∗height

Where (RGB)i is the i-th color in the image.

As you have read, anything in the computer is made of bits and there is only one �avor of bit.
So, we must �nd a way to mix picture data with some other �le data without demaging the way
the picture looks. If we change the color channel bits, the picture will change but we can modify
it in so tiny amounts that even the most accurate eye would not see the di�erence. This is called
LSB Steganography . If we modify the least signi�cant bits, the di�erence will be about one 256th
on the modi�ed pixels.

3.1 Visibility

Knowing a bit can be either 1 or 0 (probability p = 0, 5) we can approximate with some statistics
and say

4



B(p, 3) =
∑3

i=1

(
3
i

)
pi (1− p)3−i = 0, 875

R =
√

3
255 = 0, 0068

which implies that

About 87,5% of the pixels will be changed in an amount of less than 0,7%.

So, even if the modi�cation amount is important, the modi�cation itself is very small. You
can modify more than one bit but take care because, for N bits used (all beeing in the LSB order)
the change can be up to

R =
√

3
255

∑N
i=0 2i

We have seen that for N=1, R=0,7%. For N=2, R=2%. For N=3, R=5%. For N=4, R=10%.
And so on... this is exponential ! Note that for N=7 you will �nd R=173% because of the

√
3.

This comes from the de�nition of the carthesian distance bewteen two pixels :

d(A,B) =
√

(AR −BR)2 + (AG −BG)2 + (AB −BB)2

So, if A is the new color and B the original color, there is a not-null probability that we have
maximum di�erence on the three channels. Note that this is not a probability but a normalized
distance where 100% = 255.

Q ≡ AR −BR = AG −BG = AB −BB

d(A,B) =
√

Q2 + Q2 + Q2 =
√

3Q2 = Q.
√

3

Look at the pictures below to see the visibility factor, it is exponential !

3.2 Encoding

So far we haven't discussed how to achieve the LSB steganography. The �rst thing to do is to
program a function that retrieves the Nth bit of a given stream (the �le to hide). This can be
achieved by an easy algorithm like this one :

unsigned char rb (unsigned char *stream, unsigned long n) { return (stream[n/8]

> > (n%8)) & 1; }

Then, you just erase the LSB in the picture stream and replace it by the current bit read from
the �le :

bmp_stream[i] &= ~1;

bmp_stream[i] |= rb (file_stream, i);

Note that we consider the bitmap as a stream of byte and not a stream of color informations. So,
no matter big or little endian, no matter if it is RGB or BGR !

5



3.3 Decoding

To decode the �le, it is as easy. You just read the LSB and append it to the �le stream previously
�lled with zeros, like that :

void sb (unsigned char *stream, unsigned long n, unsigned char b) { stream[n/8]

|= b < < (n%8); }

sb (file_stream, i, bmp_stream[i] & 1);

6



Chapter 4

Continuous data representation

The mathematical de�nition of continuity says :

f : < 7−→ < : x 7−→ f(x)

∀x1, x2 | |x1 − x2| ≤ δ =⇒ ∃ ε | |f (x1)− f (x2)| ≤ ε

A fonction is continuous if for any given points x1and x2 that are distant of less

than a given number δ, the image of theses points are distant of less than another

number ε.

This means, if you draw a curve and follow it with your hand, you won't have to raise your
�nger from the graph. Inspired by this de�nition, we will say that a �le format is continuous if a
small change in its number representation induce a small change in the graphic's output.

This is the case for true color 24-bits bitmap. A small change in any of the color channel will
result in a very small change in the output color. This may seem trivial but it is not. Actually,
it is an important property of bitmaps. We can make a generalisation of the previous chapter by
formulating the LSB Theorem :

If a medium has continuous data representation, it can be steganographied by a

modi�cation of its least signi�cant bits.

This is the case for true color bitmaps but also for other true color format (some works in 16
bits per channel or more), for uncompressed wav �les, ... This is not the case for plain text because
a little modi�cation of the representation of the character C (ASCII binary 1000011) could yield
character B (ASCII binary 1000010).

A modi�cation need to be done to the coding and decoding algorithms discussed so far :

unsigned char rb (unsigned char *stream, unsigned long n, unsigned char Z) { return

(stream[n/Z] > > (n%Z)) & 1; }

void sb (unsigned char *stream, unsigned long n, unsigned char b, unsigned char

Z) { stream[n/Z] |= b < < (n%Z); }

Where Z is the number of bits used. For BMP-24 it will be 8 but for WAV-16 it will be 16. It
depends on the medium used.

7



Chapter 5

Indexed data

Data does not always follow the continuity rule and so is the indexed data. In computer graphics,
indexed data is mainly used through the usage of palettes. After the header, and before the data,
is placed a part called the palette. We will look at 8 bits palette but the algorithm also work for
16 bits palette or any other type.

If a �le uses only a small amount of colors, there is no need to write explicitely every three
channels for each pixels. This would take a lot of memory size so we rather prefer de�ne all the
colors and give them an ID. Then once we want to call a color, we just write its ID.

(HEADER) (PALETTE)0 (PALETTE)1 . . . (PALETTE)255 (ID)0 (ID)1 (ID)2 . . . (ID)width∗height

Where (PALETTE)i is the color with the ID i, (ID)j is the j-th pixel represented by an ID coded
on 8 bits (8 bits palette means that you can have up to 256 colors in the palette).

Then, there are two cases that we have to examine :

5.1 Pseudo-Continuous data representation

Sometimes, a palette may follow the continuity rule. This is the case for some grayscale palette
for example. But take care, a grayscale palette is not necesseraly continuous ! To be continuous,
the data must be written so that the following rule is respected :

∀n : 0 ≤ n ≤ N − 1 d
(
(PALETTE)n , (PALETTE)n+1

)
≤ ε

For any entry in the palette, the carthesian distance between its neightbours must be

less than a given ε.

Where N is the number of entries in the palette and d is the carthesian distance discussed in
Chapter 3. The visibility will depend on the value of ε. If ε is 1 the data will be called continuous,
otherelse it will be called pseudo-continuous of class ε. Continuous data might be called as pseudo-
continuous of class 1.

If data is pseudo-continuous the LSB Theorem can still be applied. It can even be generalised
:

If a medium has pseudo-continuous data representation of class K, it can be

steganographied by a modi�cation of its least signi�cant bits. Visibility will depend

upon the value of K.

8



A little modi�cation of the ID representation will yield an ID that gives an output close to the
original by the factor ε.

On the �gure below you can see an example of continuous grayscale palette and a non-
continuous grayscale palette.

5.2 Non-Continuous data representation

Of course, most palette are not pseudo-continuous and an alternative must be found. First, we
will append random colors to the palette so that it is full of 256 entries. At least, we will need it
to be pair.

You can see on the �gure above a common palette. At �rst, it does not show any interresting
pattern.

∃ i, j | 0 ≤ i ≤ N, 0 ≤ j ≤ N, i 6= j : d
(
(PALETTE)i , (PALETTE)j

)
≤ ε

9



Two di�erent entries of the palette may exist such that their distance is less than a

given ε.

For a given ε called depth on which will depending visibility. With this rule we build N
2 couples

of palette entries. Each palette entry is used only one time. So, if we invert the colour in all
the couples it should have only little change on the output. The usable space will depend on the
picture and the chosen ε. In computer terminology we will write it as :

struct couple_s

{

unsigned char id1;

unsigned char id2;

};

struct couple_s palorder[128];

Any colours that is in a couple and so �ts the previous condition will be called compatible

otherelse incompatible. There are then two ways to accomplish steganography :

5.2.1 Quick Steganography

The palette will have two channels modi�ed, choose the ones you want to use. The �rst channel
LSB will be set to 1 if the current palette entry is compatible otherelse 0. The second channel will
be set to 0 for the �rst entry of the couple and to 1 for the second entry of the couple. So each
palette entries store two informations :

1. Is the couple compatible ?

2. Do I represent a 1 or a 0 ?

Then the data of the picture is read. The couple that owns the palette ID is found and if the
couple exists the ID within the stream is replaced by the �rst ID of the couple if the current bit
to code is a zero, or the second ID of the couple if the current bit to code is a one. If the couple
does not exist because the color were incompatible then we skip and go to the next byte without
incrementing the current bit to code.

Decoding is even easier. Just iterate the picture stream and read the �rst channel. If the LSB
is null, skip and go to the next byte. If the �rst channel is not null, read the second channel and
append the LSB to your �le stream. Decoding is the advantage of the Quick Steganography issue
as you do not have to build the couples list again.

5.2.2 Nice Steganography

With Nice Steganography you will have to build the couples list in both encoding and decoding
process. If the current color to code or to decode is incompatible we skip to the next byte otherelse
we use the relative positions of the entries in the couple.{

b0 = min (p0, p1)
b1 = max (p0, p1)

Where b0 is the representation for either 0 or 1, b1 is the opposite of b0, p0 is the position in the
palette (the ID) of the �rst entry found in the couple and p1 is the position of the second entry
found in the couple.

To encode data, you replace the current ID by the entry that represent the bit you want to
code. To decode data, you just determinate if the ID is b0 or b1 and append a 0 or a 1 depending
on the results.

10



The big advantage is that no harm is done to the palette as it is not modi�ed. The disadvantage
is that you have to recompute the couples list for the decoding process.

11



Chapter 6

Lossless compression

It is possible to compress data such that the whole picture stream takes less place. You probably
know ZIP1 encoding but there is also LZW2 encoding. LZW is used in GIF3 image processing.

The big advantage with gif �les is that your data is compressed but if you decompress the �le,
nothing is lost ! The information is kept in its integrity. This is known as lossless compression.

This also means that any modi�cations on the LSB would survive the compression/decompression
algorithm. Plus, you might know that GIF uses indexed data. So, we have our very �rst popular
picture �le format that can be steganographied. While a bmp �le would be suspect on the Internet,
a GIF will not.

GIF steganography mainly deals with non-continuous data representation and the encoding or
decoding process as already been seen in the previous chapter.

1Originaly designed for the program PKZIP by Phil Katz.
2LZW, Created by Abraham Lempel, Jacob Ziv and published by Terry Welch in 1984. US Patent 4,558,302.
3Graphics Interchange Format introduced in 1987 by CompuServe.

12



Chapter 7

Lossy compression

While there are �le formats that store graphics without destruction of the data, some does not.
This is the case of the very famous JPEG �le format. You may have all experienced it yourself,
JPEG induce loss in the compression. But, JPEG is also the major graphics storage medium used
on the Internet so it would be very interesting to �nd a way to apply steganography to it.

As you will see, JPEG is much more mathematic than the other �le formats and this makes
the steganographic process very di�cult.

7.1 Encoding

Encoding is done in several steps. Imagines you have a true color image stream, you will have to
apply these techniques :

7.1.1 Color Switch

JPEG does not deal with RGB color but with another format used in TV and known as YCbCr,
sometimes refered as YCC. Y is the luminence (or a factor very close to it) and varies from zero
to one. Cb and Cr are the color di�erence and color chroma and varry from -0,5 to +0,5.

Here is the transformation matrix :

A =

 +0, 299 +0, 587 +0, 114
−0, 168736 −0, 331264 +0, 5

+0, 5 −0, 418688 −0, 081312


and is applied on a normalized RGB vector to yield a YCC vector. The previous transformation
can also be read as :  Y = 0, 299.R + 0, 587.G + 0, 114.B

Cb = −0, 168736.R− 0, 331264.G + 0, 5.B
Cr = 0, 5.R− 0, 418688.G− 0, 081312.B

Where R, G and B varries from zero (dark) to one (bright).

7.1.2 Fourier Transform

JPEG uses a special type of Fourier Transform called the Discrete Cosine Transform. This uses
much heavier mathematics than we can a�ord, roughly it consists of using the set de�ned as :

fj =
∑N−1

n=0 xncos
[

π
N j

(
n + 1

2

)]
13



The picture is decomposed in a set of 8x8 pixels blocks and the Fourier Transform is applied
to them. But prior the transform is done the color of the image is shifted so that it varries from
-128 to +127. The transform is applied on Y, Cb and Cr separately. As we deal with integer, we
round them to the nearest one.

7.1.3 Quantization

Now, each component of the 8x8 block is divided by a particular scalar. Every Aij will be scaled
by the same factor but this factor will change depending on the value of i and j.

This step will introduce some small values and even some zeros.

7.1.4 Encoding

Finaly, the picture is compressed. A typical compression algorithm for JPEG is the Hu�man1

coding which is lossless compression.

7.2 Decoding

Decoding is done in a similar way than encoding but in the reverse order. Note that the inverted
Fourier Transform is the Invert Discrete Cosine Transform which is de�ned as :

fj = 1
2x0 +

∑N−1
n=1 xncos

[
π
N n

(
j + 1

2

)]
7.3 Possible Issue

Possible issue for steganography lies in the quantization process. We have seen that there will be
values less than a known ε. We could then say ε = 1 and set to zero every values that is less
or equal than 1. Then, every null values would be �lled with a one or a zero depending on the
current bit to code. The reading process is even easier since one would just have to read the �le
and note any one or zero values to the bit stream.

As we strike against the little numbers this should have only small report in the RGB version
of the JPEG �le.

1Developped at the MIT by David A. Hu�man in 1952.

14



Chapter 8

Di�usion and confusion

Preventing steganalysis is impossible but we can make their job really painful. First of all, we can
encode the data stream with some cryptographic algorithm such as BLOWFISH 1 or IDEA2. We
can reorder the data so it would be easy to retrieve the stream but hard to have it in the right
order. We can also make it hard to catch the stream by modifying the LSB position. Rather than
using the standard de�nition of LSB we might want to use the bit forward too in a chaotic way.
Here is a four step method to be nearly steganalysis safe :

8.1 Blur the �le

First of all, you will have to add some noise to the picture. If you do not, then a part will look
more noisy than the rest. This is an easy way to discover steganographied �le. So, be sure that
there is no more noise in the part where a �le is hidden and the part where there is no hidden
data. To accomplish this, just apply the bit ciphering function on the whole bitmap stream using
randoms as bits to hide. While we are talking about noise, take care to pure color such as plain
black or plain white because a small modi�cation of these could make the steganalysis job easier.
Be careful with straight lines that should be uniform in color ; but that is way harder to prevent !

8.2 Encode the data

When the �le is loaded, it is �rst encoded with a key that depends on the graphic itself. For
example, you can generate a key by summing all the MSB, then xoring them with the bit backward
the MSB. It is up to you but remember that you cannot use the bits that are subjected to
modi�cations !

8.3 Shu�e the data

Rather than encoding the data directly in a linear way in the graphic, design a function that uses
the number of bits already written, the number of pixels in the picture and the number of bits
to encode. But remember that the function shu�e must be bijective. This can be written with
maths as :

∀x1, x2 : f (x1) = f (x2) ⇔ x1 = x2

Every point has only one image and every image correspond to only one point.

There are two ways to design such a function :

1Designed in 1993 by Bruce Schneier.
2International Data Encryption Algorithm designed by Xuejia Lai and James L. Massey in 1991.

15



8.3.1 Numerical permutation

The �rst way might be the best for the programmers as it involve discrete data. The basic idea is
to build a small permutation table like this one :

P =

 0 1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 3 0 1 7 4 2 6



P−1 =

 0 1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 6 1 5 0 7 4


Note that :

P ◦ P−1 = P−1 ◦ P = I

Where I is the identity operator : I (x) = x.

The advantage of a 8 bits permutation box is that it can be applied on a single byte. Imagine
a set of permutation called 〈P 〉n where there are permutations P0, P1, ... Pn. Imagine now a �eld
of 512 bits. This can be devided in a box of 64 bytes which can itself be divided in 8x8 boxes of
8 bits. Here is an example with 64 bits. First you apply P0 on every eight bits.

A0 = P0 (b0b1b2b3b4b5b6b7)
...
A7 = P0 (b56b57b58b59b60b61b62b63)

Then you apply P1 on the resulting eight boxes 〈A〉n.

B = P1 (A0A1A2A3A4A5A6A7)

You can use a similar pattern for every set of 8n. The major problem is that the �le size MUST

be a multiple of 8n. At least, it will work with n = 1 because data size is always a multiple of
eight bits. To decode the string, just use the inverse set

〈
P−1

〉
n
with care of the order. Be sure

your permutations are commutables :

P0 ◦ P1 ◦ . . . Pn = Pn . . . ◦ P1 ◦ P0

8.3.2 Polynomial movement

An interresting �eld of research is the polar coordinate shu�e. This uses more mathematic and
have bad sides but can be really great if properly applied. The main idea is to use polar coordinate
which can be written as : {

x = R.cos (θ)
y = R.sin (θ)

R and θ beeing functions. For example, R can be expressed as a polynom using the number of
bits already written :

RN (x) =
∑N

i=0 aix
i

This is the general formula for a polynom of Nth degree with coe�cient 〈a〉N . Example :

R2 (x) = 1 + 3x + x2

16



There is only one condition that must be respected :

∀x ≥ 0 RN (x) ≥ 1

Because a null or negative radius would get us into troubles... There is only one di�culty with
the polar coordinates and it lies in the mathematical form of the equation. Maths deals with real
numbers that can take any value while we need integer values. A good �x would be to de�ne a
function θ that takes a argument k that is incremented as long as we do not have a new value.
Also, keep a trace of the points that are already written. As you can see on the �gure below, there
are many unconvential graphs to achieve. Sample positions for bits to encode are shown with red
crosses, the curve itself is in black.

R (θ) = 1 + 3θ + θ2 R (θ) = 10.θ.tg (θ) + 1

8.4 Invoke chaos

There is nothing worse than having to put order into chaos or what looks like it. So far we have
only used the LSB but imagine we could use one of the two LSB on a 24 bits bitmaps. Here are
all the possibilities per color :

C =


 xb

xb
xb

  xb
xb
bx

  xb
bx
xb

  xb
bx
bx

  bx
xb
xb

  bx
xb
bx

  bx
bx
xb

  bx
bx
bx

 
For only one color there are eight ways to use the two least signi�cant bits. Then, there is an
in�nite amount of ways theses combinaisons can be linked. For example, one could use the folowing
pattern :

C0C4C3C0C6C4C2C1C6C4C2 . . .

While another one could do :

17



C1C2C1C0C0C3C1C0C0C2C7 . . .

Any combinaisons of the eight bricks can be used. The more chaotic the better. For N colors,
there are 8N possible ways to rearrange the data. The bad side is that two LSB will be more
visible than one LSB, resulting in poorer quality.

Of course, if we put true chaos it would be useless because we would not be able to decode
the data after. So we need a function that looks chaotic but is actually reproducible. This will
be achieved with only one parameter : the position of the color in the stream. To have pseudo-
chaotic function we will deal with prime numbers, for example the indice of C can be found with
this function : {

χ (x) = 1 x = 0
χ (x) = 0 x 6= 0

f : ℵ 7−→ ℵ : x 7−→ χ (x mod 2) .1 + χ (x mod 3) .2 + χ (x mod 5) .4

7,0,1,2,1,4,3,0,1,2,5,0,3,0,1,6,1,0,3,0,5,2,1,0,3,4,1,2,1,0,7,0,1,2,1,4,3,0,1,2,5,0,3,0,1,6,
1,0,3,0,5,2,1,0,3,4,1,2,1,0,7,0,1,2,1,4,3,0,1,2,5,0,3,0,1,6,1,0,3,0,5,2,1,0,3,4,1,2,1,0,7,0,
1,2,1,4,3,0,1,2,...

You will see it is a periodic set repeating every 30 numbers. This is because we used prime
numbers, 30 = 2 ∗ 3 ∗ 5 !

18



Chapter 9

From bits to �le pack

When you have large pictures and small �les to hide, why wasting empty space ? You might have
reached a level of steganography where you will want to store several �les in only one picture.
This is known as a pack-�le. There are two common ways to achieve pack-�les but they are all
based on a header containing the name of the �les and their size in bytes and the data itself.

Of course, do not forget to have enough space in the graphic to hold the header too !

9.1 Queue-leu-leu

Queue-leu-leu (pronounce keu-leu-leu with eu as in �Do you know the answer? ... eeeeuuuuh�) is
a french expression meaning that one thing follows another very closely like a pack of wolves. In
this pattern, each header will be followed by the data of the described �le then follow by the next
�le's header, data, and so on.

9.2 Indexation

In the indexation process you �rst write the total size of the hidden data, the name of each �les
in the order they appear and �naly the o�sets in the data at which appears the beginning of the
�le. The size can be retrieved by substracting the o�sets togheter.{

sizen−1 = offsetn − offsetn−1

sizen = totalsize− offsetn

19



Chapter 10

A brief history of... motivations

There are many ways steganography can be used. One may think of a spy sending secret infor-
mations to a foreign intelligence service while another would think about terrorist groups sending
picture containing potential targets. In both cases, steganography is used to transmit hidden
and critical informations. But, one could use steganography for other purposes such as sending
a cryptographic key. We all know that symetric cryptography has the disadvantage of the trusty
way to exchange the key; steganography might be one of these safe ways. But, there are many
other way steganography can be used such as the watermarking. Basicaly, watermarking is storing
a copyright inside a �le so that the author can still prove the �le is his job. Watermarking itself
is a whole �eld of research and steganography plays only a small part in its means...

I will conclude with a way that is very clever in its formulation : Using steganography to

prevent steganography . It might sound odd but, actually, is very serious. By encoding a known
�le in a medium through steganography you can know if the �le has been corrupted. Imagine
you have a BMP24 �le where you encode the string �I'm safe and sane� repeatidly in the LSB.
If someone tries to change the LSB you will not be able to read the original �I'm safe and sane�
message again. It does not give information about what has been done to the �le but tells you
that the �le has su�ered some modi�cations !

Remember that a strong secret rely on its environement. A suspect �le will remain suspect
wathever the algorithm you have used while a common picture will still look very common if you
take some care (ie: not modifying one of the MSBs!).

20



Index

BGR, 4
big endian, 3
bits, 3
BLOWFISH, 15
BMP, 7
BMP24, 4
byte, 3

carthesian distance, 5
chaos, 17
chaotic, 18
combinaisons, 17
commutable, 16
compatible, 10
continuity, 7
couples, 10
cryptographic, 15
cryptography, 2

data, 3
depth, 10
Discrete Cosine Transform, 13

�ags, 3
Fourier Transform, 13

GIF, 12

header, 19
Hu�man, 14

IDEA, 15
incompatible, 10
indexation, 19
integer, 3
Invert Discrete Cosine Transform, 14

JPEG, 13, 14

Least signi�cant bit, 3
leu, 19
little endian, 3
lossless compression, 12
LSB, 3, 5, 6, 10
LSB Steganography, 4
LSB steganography, 5

LSB Theorem, 7, 8
LZW, 12

matrix, 13
Most signi�cant bit, 3
MSB, 3

nice steganography, 10
noise, 15

palette, 10, 11
palettes, 8
permutation, 16
polar, 16
polynom, 16

Quick Steganography, 10

radius, 17
random, 15
RGB, 4

shu�e, 15
Steganography, 2

WAV, 7

YCbCr, 13
YCC, 13

ZIP, 12

21


